University of Manchester Explicit Runge-kutta Methods for the Numerical Solution of Singular Delay Diierential Equations Department of Mathematics Explicit Runge-kutta Methods for the Numerical Solution of Singular Delay Diierential Equations

نویسندگان

  • C A H Paul
  • C T H Baker
  • C T H Baker
چکیده

In this paper we are concerned with the development of an explicit Runge-Kutta scheme for the numerical solution of delay diierential equations (DDEs) where one or more delay lies in the current Runge-Kutta interval. The scheme presented is also applicable to the numerical solution of Volterra functional equations (VFEs), although the theory is not covered in this paper. We also derive the stability equations of the scheme for the ODE y 0 (t) = y(t); and the DDE y 0 (t) = y(t) + y(t ?); where the delay and the Runge-Kutta stepsize H are both constant. In the case of the DDE, we consider the two distinct cases: (i) H, and (ii) < H. We evaluate the performance of the scheme by solving several types of singular DDE and a VFE.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonstandard explicit third-order Runge-Kutta method with positivity property

When one solves differential equations, modeling physical phenomena, it is of great importance to take physical constraints into account. More precisely, numerical schemes have to be designed such that discrete solutions satisfy the same constraints as exact solutions. Based on general theory for positivity, with an explicit third-order Runge-Kutta method (we will refer to it as RK3 method) pos...

متن کامل

2-stage explicit total variation diminishing preserving Runge-Kutta methods

In this paper, we investigate the total variation diminishing property for a class of 2-stage explicit Rung-Kutta methods of order two (RK2) when applied to the numerical solution of special nonlinear initial value problems (IVPs) for (ODEs). Schemes preserving the essential physical property of diminishing total variation are of great importance in practice. Such schemes are free of spurious o...

متن کامل

The Numerical Solution of Delay-diierential-algebraic Equations of Retarded and Neutral Type

In this paper we consider the numerical solution of initial value delay-diierential-algebraic equations (DDAEs) of retarded and neutral types, with a structure corresponding to that of Hessenberg DAEs. We give conditions under which the DDAE is well-conditioned, and show how the DDAE is related to an underlying retarded or neutral delay-ODE (DODE). We present convergence results for linear mult...

متن کامل

High Strong Order Explicit Runge-kutta Methods for Stochastic Ordinary Diierential Equations

The pioneering work of Runge and Kutta a hundred years ago has ultimately led to suites of sophisticated numerical methods suitable for solving complex systems of deterministic ordinary diierential equations. However, in many modelling situations, the appropriate representation is a stochastic diier-ential equation and here numerical methods are much less sophisticated. In this paper a very gen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1992